Answers

3) $\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \frac{4}{12}$

3)

1)
$$=\frac{4}{6}$$
 $=\frac{8}{12}$

2) C and D are the odd ones out as they are not equivalent to $\frac{3}{4}$. C represents $\frac{3}{5}$ and D represents $\frac{2}{3}$.

A)
$$\frac{5}{10} = \frac{1}{2}$$
 \checkmark B) $\frac{1}{2} = \frac{2}{4}$ \checkmark C) $\frac{4}{6} = \frac{4}{12}$ D) $\frac{1}{1} = \frac{2}{2}$ \checkmark

There are many possible answers. Example: $\frac{4}{6} = \frac{2}{3}$ or $\frac{4}{12} = \frac{1}{3}$

4) Erin is incorrect. The numerator is sometimes a multiple of 2. $\frac{2}{6}$ and $\frac{4}{12}$ are equivalent to $\frac{1}{3}$ and 2 and 4 are multiples of 2. However, $\frac{3}{9}$ and $\frac{5}{15}$ are equivalent to $\frac{1}{3}$ but 3 and 5 are not multiples of 2. Children may have used other examples in their reasoning.

1) Liam is incorrect as there are a variety of equivalent fractions he can make using the digit cards.

 $\frac{1}{4}$ $\frac{4}{16}$ $\frac{8}{32}$

- 2) Nick is incorrect as the shaded fraction represents $\frac{1}{2}$. Fractions that are equivalent to $\frac{1}{2}$ must have a denominator that is a multiple of 2 (an even number) as the numerator will be half of this number. Halved odd numbers are not whole.
- 3) Nadia is incorrect. Here are the fractions equivalent to $\frac{1}{3}$ and the difference between their numerators and denominators.

 $\frac{1}{3}$ (difference of 2) $\frac{2}{6}$ (difference of 4) $\frac{3}{9}$ (difference of 6) $\frac{4}{12}$ (difference of 8)

 $\frac{5}{15}$ (difference of 10)

 $\frac{6}{18}$ (difference of 12)

The difference between the numerator and the denominator increases by 2 each time.

