
Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

1

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Contents
Introduction ... 3

Program Design .. 3

Levels of Scaffolded coding tasks .. 4

Year 2 – Medium Term Plan ... 5

Lesson 1 - Algorithms ... 6

Aims ... 6

Success criteria .. 6

Resources ... 6

Activities... 6

Lesson 2 – Repeat and Timer ... 9

Aims ... 9

Success criteria .. 9

Resources ... 9

Activities... 9

Lesson 3 - Debugging ... 12

Aims ... 12

Success criteria .. 12

Resources ... 12

Activities... 12

Lesson 4 – Different Object Types ... 14

Aims ... 14

Success criteria .. 14

Resources ... 14

Activities... 14

Lesson 5 – The design, code, test process ... 16

Aim ... 16

Success criteria .. 16

Resources ... 16

Activities... 16

Appendix I: Creating a Displayboard .. 18

Appendix 2 - Approving work on a displayboard ... 19

Assessment Guidance .. 20

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

Introduction
This unit consists of six lessons that assume children have completed Unit 1.7 in year 1. If children have not

completed this unit, then you might wish to teach the Coding Catch-Up Unit instead. Children will be coding using

the 2Code tool.

Coding vocabulary is shown in bold within the lesson plans, use these new words in context to help children

understand the meaning of them and build up, their vocabulary of coding words.

The Chimp activities provide further practice of the concepts that the children will be learning and can be used as

extension activities. More able children can be encouraged to explore other things that they can change in their

programs and experiment with the options available, such as image and scale in 2Code.

Children will often be able to solve their own problems when they get stuck, either by reading through their code

again or by asking their peers; this models the way that coding work is really done. More able pupils can be

encouraged to support their peers, if necessary, helping them to understand but without doing the work for

them.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put computational

thinking into practice. The lesson plans incorporate designing before coding in some lessons.

Storyboarding their ideas for programs. For example, creating a storyboard when planning a program that will

retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey animation

that tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against the

computer, what are all the actions needed from the objects?

During the design process, children should be encouraged to clarify:

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either refine the design

or review possible solutions as a class or group.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when teaching

children to code. The lessons provide many of these levels of scaffolding within them and using Free Code Chimp,

Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These are not progressive

levels, children can benefit from all the levels of activities at whatever coding skill level they are:

Scaffolding Task type Examples of how to provide these opportunities

 Copying code By giving children examples of code to copy.

Targeted tasks
• Read and understand code

• Remix code to achieve a particular outcome.

• Debugging.

• Use printed code snippets so that children can’t run the code but must read it.

• Include unplugged activities and ‘explaining’ tasks e.g. ‘how do variables work?’

Shared coding • Sharing Challenge activities as a class or group on the whiteboard.

• Complete guided activity challenges as a class.

• After completing challenges; share methods to create a class version of the

challenge.

• Free coding as a class

Guided

exploration
• Exploring a limited repertoire of commands

• Remixing code

• Explore commands in free code before being taught what they do.

• Use questioning to support children’s learning.

• PRIMM approach; Predict – Run – Investigate – Modify - Make

Project design

and code

Projects (imitate, innovate, invent, remix)

There are different ways to scaffold learning in projects. This process can be

applied to programming projects;

• Using example projects e.g. the Guided 2Code activities.

• Completing the challenges at the end of each guided activity.

• Free code✓

• Create a project that imitates a high-quality exemplar.

• Remixing ideas.

• Independently creating a brand-new program.

Tinkering Use Free code Gorilla to access the full suite of 2Code objects and commands ✓

Use Free code to play and explore freely.
Adapted from work by Jane Waite - Computing at Schools https://www.computingatschool.org.uk/

Note: To force links within this document to open in a new tab, right-click on the link then select ‘Open link in

new tab’.

In Literacy, some teachers follow a progression that scaffolds learning to write texts. At

first pupils read lots of examples of the genre of text they are going to create. Then

they create an imitation of an example text. Next, they create a variation of the text

(remix and innovate). Finally, they get to inventing a brand-new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.computingatschool.org.uk/

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

Year 2 – Medium Term Plan

Lesson Aims Success Criteria

Lesson 1 -

Algorithms

• To understand what an algorithm

is.

• To create a computer program

using simple algorithms.

• Children can explain that an algorithm is a set of

instructions.

• Children can describe the algorithms they created.

• Children can explain that for the computer to make

something happen, it needs to follow clear

instructions.

Lesson 2 –

Repeat and

Timer

• To compare the Turtle and

Character objects.

• To use the button object.

• To understand how use the Repeat

command.

• To understand how to use the

Timer command.

• Children know that the Turtle and Character objects

have different properties and move in different

ways. They can begin to make choices about which

object type to use.

• Children are beginning to understand that the

Repeat and Timer commands both make objects

repeat actions but function differently and the type

of object can affect which is the best command to

use.

• Children can include a button in their programs.

Lesson 3 -

Debugging

• To know what debugging means.

• To understand the need to test and

debug a program repeatedly.

• To debug simple programs.

• Children can explain what debug (debugging) means.

• Children have a clear idea of how to use a design

document to start debugging a program.

• Children can debug simple programs.

• Children can explain why it is important to save their

work after each functioning iteration of the program

they are making.

Lesson 4 –

Different

Object

Types

• To create programs using different

kinds of objects whose behaviours

are limited to specific actions.

• To predict what the objects will do

in other programs, based on their

knowledge of what the object is

capable of.

• To discuss how logic helped them

understand that they could only

predict specific actions, as that is

what the objects were limited to.

• Children can create a computer program using

different objects.

• Children can predict what the objects in classmates’

programs will do, based on my knowledge of the

objects’ limitations, e.g. a turtle can only move in

specific ways.

• Children can explain how they know that certain

objects can only move in certain ways

Lesson 5 –

The design,

code, test

process

• To use all the coding knowledge,

they have learned throughout their

programming lessons to create a

more complex program that tells a

story.

• Children can plan and use algorithms in programs
successfully to achieve a result.

• Children can plan and use algorithms in programs

successfully to achieve the desired a result.

• Children can code a program using a variety of

objects, actions, events and outputs successfully.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

Lesson 1 - Algorithms
Aims

• To understand what an algorithm is.

• To create a computer program using simple algorithms.

Success criteria

• Children can explain that an algorithm is a set of instructions.

• Children can describe the algorithms they created.

• Children can explain that for the computer to make something happen, it needs to follow clear

instructions.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Coding vocabulary quiz 1.

• Using two identical sets of any construction toy, build two models, one that follows the instructions

and one that does not. An example would be using Lego Duplo to build a bird, one that follows these

instructions and one that uses the same bricks but not the instructions. Download the instructions for

your model so that you can display them on the board.

• Air Traffic Control guided lesson .

• Free code Chimp (found on the main 2Code page).

• (Optional) Print storyboard templates for program design.

• (Optional) Student and Teacher Flash vocabulary cards: The Teacher flash cards have been created in

such a way that you can print them on A4 paper, cut them to size, fold them in half and glue them

together.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

Activities

1. Firstly, we are going to review the coding vocabulary that the children learnt in year 1. Use the quiz as a

class. It is set up so that you attempt all three questions and then click the button to check the

answers. Click ‘OK’ to see which are correct and incorrect:

2. You can use the vocabulary cards to find the answers and display in the classroom.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/site#app/games/2diy/coding_vocab_quiz_y1
http://www.buildingexamples.com/index.php/examples/duplo/animals/farm/113-duplo-animal-bird
http://www.buildingexamples.com/index.php/examples/duplo/animals/farm/113-duplo-animal-bird
https://www.purplemash.com/app/code/chimp/airtrafficcontrol
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

3. Explain that today, the class will be working on a new word: algorithm. Have a look at the definition

together using the vocabulary cards:

4. Show the children your two models, without displaying the instructions. Ask them which is correct.

Hopefully, they will say they are both correct; there is no such thing as correct when building creatively.

They might prefer one over the other, but both are correct.

5. Now, show them the instructions and ask the question again. This time, the model made using the

instructions is the correct one. The step-by-step instructions are the algorithm for building the bird.

6. Show children the Air Traffic Control lesson.

7. Work through challenges 1 and 2 with the children, reading through the blocks of code. Explain that we

are following the instructions for what the code should do and then turning it into code.

8. When coding, we write algorithms for how the code should work then we turn the algorithms into

computer code so that the computer can follow the algorithm. In the example, the algorithm is about

making the planes move in different directions, so they look like they are taking off. Below is a diagram of

the design with some numbered notes to show the algorithm.

9. We turn the algorithm into 2Code code that the computer can understand.

10. Next, review how to navigate to the 2Code page and find and open Free Code Chimp. Demonstrate how

to go to Design Mode .

An algorithm is a precise step by step set of instructions used to solve a problem or achieve an

objective.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

11. Drag in two turtle objects and change the image of one of them to a different coloured turtle (double-

click on it).

12. See whether children can remember how to add a background picture: click on the icon and then

the image property question mark in the properties table:

13. Remind children how to save their work and discuss why it is important to save their coding regularly so

that they have a working version to go back to.

14. Go into Code Mode and show the children the actions that the turtle object can make by

dragging one of the turtle code blocks into the coding window and looking at the pop-up action menu:

• forwards and backwards

• turn anticlockwise or clockwise by a set number of degrees

• Set pen colour, pen thickness, pen up and pen down

• hide, show and speak.

15. Children could work in pairs or individually. Children should create a design document similar to the plane

example. They could use printed storyboard templates to show the sequence of the program (see

resources section above). They should decide:

• What their objects are (the turtles),

• type of background (you might want to show the ready-made backgrounds) – NB designs should

always be rough drawings e.g. stick people, not a picture that takes time to draw.

• The steps of their algorithm (What their program should do?): Children should create a program in

which one turtle uses an algorithm with one step, and the other an algorithm with two steps.

16. Once children have their programs planned out, they should create it in Free Code Gibbon. They should

save and test their code.

17. Show children how to save their work in their folders and print it out for their workbooks, if required.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

Lesson 2 – Repeat and Timer
Aims

• To compare the Turtle and Character objects.

• To use the button object.

• To understand how use the Repeat command.

• To understand how to use the Timer command.

Success criteria

• Children know that the Turtle and Character objects have different properties and move in different

ways. They can begin to make choices about which object type to use.

• Children are beginning to understand that the Repeat and Timer commands both make objects

repeat actions but function differently and the type of object can affect which is the best command

to use.

• Children can include a button in their programs.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Code-block cards: Children will need to use a few copies of each picture to create code away from

the computer.

• Vocabulary cards as per Lesson 1. – specifically, the words ‘Repeat’ and ‘Timer’.

• (optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

• Repeat and Timer example. Set this as a 2do for the class.

Activities

1. Begin by reviewing the code blocks used in year 1 to refresh the children’s memories. Go through the

code-block cards, discussing how they can be used to build up the code. Point out that each new

instruction is written on a new line to make the code easier to understand. Give children some time

in pairs to use the code-block cards to write their own code:

• Child A should lay out a line of code by joining blocks.

• Child B should read the line of code and explain what it does.

• Repeat, swapping roles.

• Can children include ‘When Clicked’ or ‘When Swiped’ in their code correctly?

2. Display the words, Repeat and Timer, on the board using the flash cards and ask the children to

guess what they mean. Discuss each word with the children and explain their meaning.

3. Open Free Code Chimp on the board and look at the left-hand side toolbar. Ask children if they can

see any of the new vocabulary to which they’ve just been introduced.

Repeat

This command can be used to make a block of commands run a set number of times or forever.

Timer

Use this command to run a block of commands after a timed delay or at regular intervals.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/#tab/teachers/computing_main_page/2code_guides_and_resources/2code_free_code_sow/2code_y2_lesson_plans_new
https://www.purplemash.com/app/code/examples/2code_example_repeat_timer

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

4. Open the example program. Look at the design view. There are 6 objects; a hero, a turtle and four

buttons. These different objects move differently and have different properties. If you look at the

properties of them in design view, you can see that they are different:

5. Switch to code mode and locate the code for the four buttons. You do not need to go through the

code, just show children how to find the code for what happens when each button is clicked. The

only event that buttons respond to is the click event. They cannot be coded to move or change.

6. Find the code for when . What do the children think

happens? You might be able to relate this to work that the children have done with floor robots.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

7. Run the code and click on the button ‘Repeat command with Turtle’, concentrating on what the

turtle does. You will see that the turtle moves very quickly.

8. Now look at the code for and discuss what they think happens.

9. Run the code and click on the button ‘Repeat command with Hero’, concentrating on what the hero

does. It will probably not be what they are expecting. The reason it looks like the hero is doing very

little is that the computer runs all the commands very quickly.

10. That’s why we use computers for things as they can process information extremely fast. We need

code to slow the process down and that is where the Timer command comes in.

11. Click the Stop button to end the program.

12. Look at the code for the two timer buttons, can children make logical suggestions as to what will

happen when the code is run?

13. Draw children’s attention to the difference between the timers for the turtle and the hero. The turtle

timer says . The Hero code uses timers that say . What is the

difference? Explain that the turtle timer will keep repeating until the program is stopped; there is no

way to turn it off. The Hero timers will just cause an action to start or happen once.

14. Look at the final bit of code; when does this code run? When the Turtle collides with the Hero.

15. Run the code and compare this to their expectations. Notice that the turtle doesn’t stop whereas the

Hero does. Run the program a few times, sometimes the hero will collide, sometimes it won’t – this

means that the collision code doesn’t always get run.

16. Children should open the example from their 2dos tab and try changing some of the code to explore

the function of the Repeat or timers. Can they reach a point where the code does exactly what they

expect or are there still surprising effects? This is why code always needs testing to make sure that it

functions as expected.

17. Further work on Timers (optional)

• In the Chimp activities, the use of the timer is introduced in a video in Step 5 of ‘Princess and the

Frog’, and the ‘Tick Tock Clock’ and ‘Magician’ activities also use a timer. You can look at these with

the children if they need more guidance or ideas.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

Lesson 3 - Debugging
Aims

• To know what debugging means.

• To understand the need to test and debug a program repeatedly.

• To debug simple programs.

Success criteria

• Children can explain what debug (debugging) means.

• Children have a clear idea of how to use a design document to start debugging a program.

• Children can debug simple programs.

• Children can explain why it is important to save their work after each functioning iteration of the

program they are making.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Debug Challenges Chimp – this is on the main 2Code page - set this as a 2do for the class.

• Debugging process to display on the whiteboard.

• Debugging Record sheet – each child (or pair) will need a paper copy.

• Debugging examples (4); set these as 2dos.

Activities

1. Today we are learning another new piece of vocabulary: debugging. Ask children if they know what

bug, debugging or to debug means?

2. Last lesson we were looking at Repeat and Timer; these often don’t work exactly as expected and can

prevent the program doing what you design it to do. This shows how important it is to test the code,

debug and save at each stage of creating a program, not just at the end.

Bug

A problem in a computer program that stops it working the way it was designed.

Debug/Debugging

Looking for any problems in the code, fixing and testing them.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/code/debugchallenges/2codedebugchimp
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/site#app/flashcards/2c_debugging_process
https://www.purplemash.com/app/flashcards/Debugging_record_sheet
https://www.purplemash.com/#tab/computing_sow_y2_unit_2-1/debugging_code_examples

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

3. Before you start to debug a program, you need to think through some steps. Put the following on the

board (there is a link to a PDF of this table in the Resources section). Children could write/stick the

steps into their 2Code workbooks.

4. Children should open the Debug Challenges Chimp on their device and complete the challenges.

5. Once children have completed the Debug Challenges, bring them back together and hand out the

debugging record sheets. Explain that you have set four 2Code programs as 2dos and show the

children how to find them.

6. The children need to work out which program matches each design and circle the letter on the sheet.

7. Then they need to use the algorithm and test the code to find the bugs (number of bugs shown in

brackets), write down what the bugs are and fix them. Then save the fixed file. They can ‘sign-off’ to

say that all the bugs are fixed ‘like real programmer do’.

8. Review the examples as a class. How did they match the programs to the designs? How did they go

about fixing the bugs?

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/debugchallenges/2codedebugchimp

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

Lesson 4 – Different Object Types
Aims

• To create programs using different kinds of objects whose behaviours are limited to specific

actions.

• To predict what the objects will do in other programs, based on their knowledge of what the object

is capable of.

• To discuss how logic helped them understand that they could only predict specific actions, as that is

what the objects were limited to.

Success criteria

• Children can create a computer program using different objects.

• Children can predict what the objects in classmates’ programs will do, based on my knowledge of

the objects’ limitations, e.g. a turtle can only move in specific ways.

• Children can explain how they know that certain objects can only move in certain ways

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Example program for Lesson 4.

Activities

1. Today we will be creating our own programs using different kinds of objects. Review what ‘objects’

are in coding. Remind children where objects can be found in Design Mode in Free Code Chimp.

2. Explain that in a computer program, objects can only do what we, the coders, tell them to do. Some

objects can only do certain things.

3. Go through the different types of object found in Design Mode and explain that in this lesson we

will only be using turtles and characters.

Characters

Food, animals, princesses,

heroes and emoticons can go

up, down, left, right, hide and

show.

Turtles

Can go forwards, backwards,

turn clockwise and

anticlockwise.

Buttons

Can be clicked.

4. Tell children that the task is to create a program in Free Code Chimp using one turtle and the When

Clicked command. The turtle should do three or four different things when clicked.

4. Children should create a brief design first to plan what they want their turtle to do.

5. Then children should code, save, test and debug their code.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/code/examples/2c_y2lp4

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

6. Come back together as a class. Open one of the children’s programs on the board in Design View

and ask the children to predict what the turtle will do when they click on it.

7. The turtle is limited to going forwards, backwards, turning left or turning right, so any of those

answers is potentially correct. Go through two to four programs, getting the children to guess what

the turtles might do, based on their logical knowledge of the turtles’ limitations.

8. Explain to children that now, they will be adding characters to their programs. Show on the

whiteboard that characters can do more than turtles, so the children have more scope in terms of

what to do with them. Example program for Lesson 4.

9. They should adapt their designs to add a character. The character should do four different things

when different keys are pressed on the keyboard (using the When Key command). NB If the

children are coding on tablets, this option is not available. Instead they should code the character

to do different things when the background is swiped in different directions.

10. Send children to devices to work on their programs.

11. Once children are done, they should save their programs and come back together at the

whiteboard.

12. Open a child’s program on the board in Design View and ask the class to predict what the character

will do when it is clicked. Characters can go up, down, left, right or stop, so any of those answers

are potentially correct. Repeat with two to four more programs, asking children to predict both

turtles’ and characters’ actions, using their knowledge of the character limitations of movement to

guide them.

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y2lp4

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

Lesson 5 – The design, code, test process
Aim

• To use all the coding knowledge, they have learned throughout their programming lessons to

create a more complex program that tells a story.

It would be a good idea for the children to spend some time planning their story for this program in a

Literacy lesson. The storyboards linked to below might be useful for this.

If you wish to have 6 lessons in this unit, this lesson could easily be stretched over 2 sessions.

Success criteria

• Children can plan and use algorithms in programs successfully to achieve the desired an end result.

• Children can code a program using a variety of objects, actions, events and outputs successfully.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Example program for Lesson 5 Example Story program.

• Blank printable storyboards for designing.

• Create a displayboard for children to share their work to. See Appendix 1 for details of how to do

this.

Activities

1. Today we will be using everything we have been learning about programming to create a computer

program that tells a short story.

2. If you have used part of a Literacy lesson to plan the story, you can omit the planning stages here.

3. Children could work in pairs or individually to think of a short story that they could tell using their

computer programming knowledge. For example, a character being eaten by a dragon and a hero

coming to save them. The following is an example: Story Program Example.

4. Some of the Chimp activities can also provide ideas for actions in the story, such as ‘Guard the Castle’

and ‘The Princess and the Frog’.

5. Encourage children to think through their designs and annotate them including their confidence in

coding what they have designed (red, amber, green), this will give you feedback on areas that children

need help with and help to ensure that children create realistic designs and successful programs for

their skill level. Here are some sample designs:

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/code/examples/sow_y2_unit_2_1_example
https://www.purplemash.com/app/code/examples/sow_y2_unit_2_1_example

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

6. Children should spend time designing, planning (annotating with the algorithms) and coding.

7. Remind children how to save and then show them how to share their work to a displayboard:

8. Click on the share button (they must have saved their work first).

9. Click .

10. Find the displayboard that you created for them and click on it and then ‘ok’.

11. You (the teacher) will then need to bulk approve all the work so the children can see it. See Appendix 2

for a guide to how to do this.

12. Show some of the children’s work using the Displayboard. The child whose work it is, should read their

own code to explain what the program should do, and you can try it out.

13. Peer review the programs, can others identify particularly good aspects from programs or suggest

improvements in their programs?

mailto:sow@2simple.com?subject=SoW%20Unit%202.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 1.7 – Coding – Appendix 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

Appendix I: Creating a Displayboard

For detailed information about Purple Mash Displayboards, see the User Guide in the Teachers>User

Guides section of Purple Mash. These instructions tell you only the steps needed for the displayboard this

unit of work

Click on the Admin tab and select the icon to access the Display Boards control panel.

You will see a list of the existing boards. If this is your first board the list will be empty.

Under Available Boards click the icon and choose a name for your board.

You can optionally add a description for the board and choose an icon to represent your board.

Tick the Hide Info boxes if children access Purple Mash at home and you do not want names viewable.

Do not tick any of the Access tick boxes.

In the bottom section, locate your class by clicking on the arrow next to the Classes folder and ticking the

box by the class name.

Click the Save button at the bottom of the screen to save your board.

You're done! Your board is ready to receive new projects from pupils.

NB You will only be able to add classes if you are the allocated teacher for that class.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/guides/Displayboards_pdf_Guide
https://www.purplemash.com/site#tab/Teachers/guides_and_resources
https://www.purplemash.com/site#tab/Teachers/guides_and_resources

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Appendix

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

Appendix 2 - Approving work on a displayboard
For detailed information about Purple Mash Displayboards, see the User Guide in the Teachers>User Guides

section of Purple Mash. The steps below assume that you are going to bulk approve all entries on the

displayboard as part of lesson 4.

Open the displayboard from the home screen by clicking on the Sharing tab and then on the

displayboard.

Turn on editing by clicking the slider. Then select ‘unapproved items’ from the drop-down list.

Click on the first item on the page, click and hold down, the Shift key, then click on the last item on the page.

Then click the icon to approve selected projects.

If there are more pages (grey arrow on the right), go to these and approve the work in the same way.

To return to the Display Board main screen, click the icon.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/guides/Displayboards_pdf_Guide
https://www.purplemash.com/site#tab/Teachers/guides_and_resources
https://www.purplemash.com/site#tab/Teachers/guides_and_resources

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

Assessment Guidance
The unit overview for year 2 contains details of national curricula mapped to the Purple Mash Units. The following

information is an exemplar of what a child at an expected level would be able to demonstrate when completing

this unit with additional exemplars to demonstrate how this would vary for a child with emerging or exceeding

achievements.

Assessment Guidance

Emerging Children know that an algorithm is related to giving instructions. They can relate a simple one
step algorithm to the outcome of code in Free code Chimp. For example, in Lesson 1, steps
15-16 they have been able to make a program that follows their algorithm e.g. ‘when the
turtle is clicked it moves forwards’.

With support, children can create a simple one step program that achieves a specific purpose.
With support, children can identify and correct errors. For example, (Unit 2.1 Lesson 3).

With support, children can identify the parts of an algorithm that control and initiate specific
actions. Based on this, with support, children can predict what will happen in a program. For
example, (Unit 2.1 Lesson 4).

Expected Children can explain that an algorithm is a set of instructions to complete a task. They have
turned algorithms of more than one step into code using freecode Chimp. For example, in
Lesson 1, step 16 they have been able to make a program that follows their algorithm e.g.
‘when the turtle is clicked it moves forwards then turns right’. Children show an awareness of
the need to be precise in their designs so that algorithms can be successfully translated into
code. For example: lesson 5 – step 6.

Children use a planning format on paper before implementing on screen within 2Code as they
recognise this is the best approach for designing a solution efficiently (Unit 2.1. Lesson 5).

They can use the Design Mode within 2Code to carefully see how their planned program will
look and are able to switch into Code Mode to apply movements to turtle objects (Unit 2.1.
Lesson 1 Point 16). They confidently include objects, actions, events and outputs successfully
within their 2Code programs.

Children can talk through code which contains repeat and timer commands, explaining where
they are positioned and what will happen (Unit 2.1. Lesson 2 Points 6 & 8). Children can
predict program outcomes and attempt to debug. For example, (Unit 2.1 Lesson 3).Children
can identify the parts of a program that respond to specific events and initiate specific
actions. Based on this, children can predict and describe, using a cause and effect sentence,
what will happen in a program. For example, (Unit 2.1 Lesson 4).

Children can debug their own and other’s programs using design documentation to test
against (Unit 2.1. Lesson 3).

Most children will be able to save their files using a memorable file name e.g. their name and
a simple title etc. Specifically, they will be able to save their work in these lessons- (Unit 2.1
Lesson 1 Point 9, Unit 2.3 Lesson 1 Point 2 and Unit 2.6 Lesson 1 Point 8).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 2.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

Assessment Guidance

Exceeding Children can explain and give examples that an algorithm is a set of instructions to complete a
specific task. They can create complex and logical algorithms of several steps that accomplish
the aim of the task that can be easily utilized to create executable code. Children show an
awareness of the need to be precise in their designs so that algorithms can be successfully
translated into code. For example: lesson 5 – step 6.

Children can create more complex programs that utilize all the coding constructs that they
have learnt about and extend their own learning by trying out different ways to code that
achieve a specific purpose. Children can identify and correct errors. For example, (Unit 2.1
Lesson 3). An exceeding pupil will be able to apply their knowledge as a transferable skill
across a range of debugging scenarios including making logical attempts to debug their own
more complex code.

Children can identify the parts of a program that respond to specific events and initiate
specific actions. Based on this, children can adopt a systematic approach for predicting the
behaviour of programs. Furthermore, using cause and affect language, children can reason in
detail about what will happen in a program. For example, (Unit 2.1 Lesson 4).

14.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

