Ready-to-go Lesson Slides Year 2

Please note:
2-D and 3-D shapes will be needed for this lesson.

Geometry: Properties of Shapes
 Lesson 8

At Third Space Learning we provide personalised online lessons from specialist maths tutors to support the target groups in your school.

These ready-to-go slides are designed to work alongside our interventions to supplement quality first teaching and raise attainment in maths for all pupils.

To find out more about how you could use our 1-to-1 interventions year-round to boost maths progress in your school then get in touch:

02037710095
hello@thirdspacelearning.com
Boosting maths progress through 1-to-1 conversations...

To count faces on 3-D shapes

Success Criteria:

- I know what a "face" is on a 3D shape.

I I can count faces on 3D shapes
\square I know the difference between curved surfaces and faces

Starter:

Here is a number pattern.

1, 2, 2, 3, 1, 2, 2, 3...

Can you represent this pattern with 2-D shapes?

To count faces on 3-D shapes

Starter:

Here is a number pattern.

$1,2,2,3,1,2,2,3 \ldots$

Can you represent this pattern with 2-D shapes?

This is one possible answer.
There are other ways of making this pattern.

To count faces on 3-D shapes

Talking Time:

Here is a cube.
Which 2-D shapes would you be able to see if you looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

To count faces on 3-D shapes

Talking Time:

Here is a cube.
Which 2-D shapes would you be able to see if you
looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

You would see six square faces on the cube. So, you would need to draw six of these:

To count faces on 3-D shapes

Talking Time:

Here is a cuboid.
Which 2-D shapes would you be able to see if you looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

To count faces on 3-D shapes

Talking Time:

Here is a cuboid.
Which 2-D shapes would you be able to see if you
looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

You would see four rectangular and two square faces on the cuboid. So, you would need to draw
four of these

and two of these.

To count faces on 3-D shapes

Talking Time:

Here is a square-based pyramid. Which 2-D shapes would you be able to see if you looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

To count faces on 3-D shapes

Talking Time:

Here is a square-based pyramid.
Which 2-D shapes would you be able to see if you
looked at all the faces on this 3-D shape?
Can you draw what you would be able to see?

You would see four triangular faces and one square face on the square-based pyramid.
So, you would need to draw
four of these

To count faces on 3-D shapes

Talking Time:

Alena has a 3-D shape.
She looks closely at the shape and she can see

- 2 faces that are circles
- 1 curved surface

Which of these 3-D shapes is Alena looking at and how do you know?

cone

cylinder

square-based pyramid

sphere

To count faces on 3-D shapes

Talking Time:

Alena has a 3-D shape.
She looks closely at the shape and she can see

- 2 faces that are circles
- 1 curved surface

Which of these 3-D shapes is Alena looking at and how do you know?

cone
This only has 1 circular face.

cylinder

square-based pyramid
This has no curved surfaces or circular faces.

sphere
This only has 1 curved surface.

To count faces on 3-D shapes

Activity 1 :

Darcey is thinking about a 3-D shape.
Can you work out which 3-D shape Darcey is thinking about?
Can you explain your thinking?

To count faces on 3-D shapes

Activity 1 :

Darcey is thinking about a 3-D shape.
Can you work out which 3-D shape Darcey is thinking about?
Can you explain your thinking?

Darcey is thinking about the cone.
cone

or the
Could it be the

The sphere has no faces and the cylinder has 2 circular faces.

cylinder

To count faces on 3-D shapes

Talking Time:

This is a triangular prism. Jenson is counting the faces of the shape and he marks each face that he has counted with a cross. How many crosses will Jenson write on this prism?

To count faces on 3-D shapes

Talking Time:

This is a triangular prism. Jenson is counting the faces of the shape and he marks each face that he has counted with a cross. How many crosses will Jenson write on this prism?

The triangular prism has five faces.
There are 3 rectangular ones and two triangular ones.
So, Jenson will write 5 crosses on the 3-D shape.

To count faces on 3-D shapes

Talking Time:

Can you complete this table of real-life 3-D objects?

shape	name of shape	number of flat faces	draw the faces

To count faces on 3-D shapes

Talking Time:

Can you complete this table of real-life 3-D objects?

shape	name of shape	number of flat faces	draw the faces
\square	cube	6	$\square \square \square$
	cuboid	6	\square
	square- based pyramid	5	\square
	\square		

To count faces on 3-D shapes

Talking Time:

Jenson now has a sphere. He is working out how many faces it has. He thinks that it has lots!
 Is he right?
Why? Why not?

To count faces on 3-D shapes

Talking Time:

Jenson now has a sphere. He is working out how many faces it has. He thinks that it has lots!
 Is he right?
Why? Why not?

Jenson is not correct.
A sphere has no faces.
It only has one curved surface.

To count faces on 3-D shapes

Talking Time:

Can you complete this table of real-life 3-D objects?

shape	name of shape	number of flat faces	number of curved surfaces
D. Drm			

To count faces on 3-D shapes

Talking Time:

Can you complete this table of real-life 3-D objects?

shape	name of shape	number of flat faces	number of curved surfaces
cone	1	1	
	sphere	0	1
Drimmen			
cylinder	2	1	

To count faces on 3-D shapes

Activity 2:

Noah has a 3-D shape.
Evie guesses what that 3-D shape is.
Do you agree with Evie's guess?
Why? Why not?
Could there be another answer?

To count faces on 3-D shapes

Activity 2:

Noah has a 3-D shape.
Evie guesses what that 3-D shape is.
Do you agree with Evie's guess?
Why? Why not?
Could there be another answer?

To count faces on 3-D shapes

Activity 3 :

Bella is sorting some 3-D shapes.
Can you sort the shapes as well?
Does your sorting match Ralla'с ancismer on the next slide?

To count faces on 3-D shapes

Activity 3 :

Bella is sorting some 3-D shapes.
Can you sort the shapes as well?
Does your sorting match Bella's answer on the next slide?

To count faces on 3-D shapes

Evaluation:

Can you use the clues to guess which 3-D shape I am thinking of?

The shape that I am thinking of

- has at least one face
- has a square face
- has more than one different
 shaped face

To count faces on 3-D shapes

Evaluation:

Can you use the clues to guess which 3-D shape I am thinking of?

Success Criteria:

\square I know what a "face" is on a 3D shape.
I I can count faces on 3D shapes

- I know the difference between curved surfaces and faces

The shape that I am thinking of

- has at least one face
- has a square face
- has more than one different shaped face

I am thinking of the square-based pyramid.

Do you have a group of pupils who need a boost in maths this term?

Each pupil could receive a personalised lesson every week from our specialist 1-to-1 maths tutors.

- Raise attainment
- Plug any gaps or misconceptions
- Boost confidence

Speak to us:

thirdspacelearning.com\& 02037710095hello@thirdspacelearning.com

THIRD SPACE LEARNING

